Minggu, 22 September 2019

Matematika Baris dan Deret

BARIS dan DERET

Pengertian Barisan

Barisan merupakan sautu urutan dari suatu anggota-anggota himpunan yang dilandasi dengan suatu aturan tertentu.
Dalam masing-masing angota himpunannya akan diurutkan pada urutan atau suku pertama, kedua, dan seterusnya.
Untuk menyatakan suatu urutan atau suku ke-n dari suatu barisan bisa kita notasikan dengan lambang: Un .
Barisan juga dapat diartikan sebagai fungsi dari bilangan asli atau fungsi yang domainnya merupakan himpunan bilangan asli. Sehingga, Un = f(n)

Contoh persoalan:
Misalnya: Un = (2n + 1), maka suku ke-4 dari baris tersebut adalah U4 = (2(4) + 1) = 9.

Pengertian Baris Aritmatika

Baris aritmatika merupakan suatu baris di mana nilai pada masing-masing sukunya diperoleh dari suku sebelumnya lewat penjumlahan atau pengurangan dengan suatu bilangan b.
Selisih antara nilai suku-suku yang berdekatan tersebut selalu sama yakni b.
Maka:
Un – U(n-1) = b
Sebagai contoh baris 1, 3, 5, 7, 9, merupakan baris aritmatika dengan nilai:
b = (9 – 7) = (7 – 5) = (5 – 3) = (3 – 1) = 2
Untuk mengetahui nilai suku ke-n dari sebuah barisan aritmatika, bisa kita ketahui dengan cara mengetahui nilai suku ke-k dan selisih antar suku yang berdekatan (b).
Adapaun rumusnya seperti yang tertera di bawah ini:
Un = Uk + (n – k)b
Jika yang diketahui merupakan nilai suku pertama Uk = serta selisih antar sukunya (b), maka nilai k = 1 dan juga nilai Un = adalah
Un = a + (n – 1)b
Suku Tengah Barisan Aritmatika
Apabila terdapat barisan aritmatika yang memiliki banyak suku (n) ganjil, suku pertama a, dan juga suku terakhir Un maka suku tengah Ut dari barisan tersebut ialah sebagai berikut.
Ut = 1/2(a + Un)dengan t = 1/2(n+1)
Pengertian Deret
Deret merupakan suatu penjumlahan dari anggota-anggota sebuah barisan.
Contoh deret:
  • 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9
  • 2 + 5 + 8 + 11 + 14 + 17
  • 13 + 11 + 9 + 7 + 5 + 3
Pengertian Deret Aritmatika
Deret aritmatika merupakan suatu penjumlahan antar suku-suku dari sebuah barisan aritmatika. Penjumlahan dari suku-suku petama hingga suku ke-n barisan aritmatika tersebut bisa dihitung sebagai:
Sn = U1 + U2 + U3 + …. + U(n-1)
atau sebagai =
Sn = a + (a + b) + (a + 2b) + …. + (a + (n – 2)b) + (a + (n – 1)b)
Jika, hanya diketahui nilai a merupakan suku pertama serta nilainya merupakan suku ke-n, maka nilai deret aritmatikanya yakni:
Sn = n/2(a + Un)
Persamaan tersebut bisa kita balim untuk mencari nilai suku ke-n menjadi:
Sn = U1 + U2 + U3 + …. + U(n-1)
S(n-1) = U1 + U2 + U3 + …. + U(n-1)
Sn – S(n-1) = Un
Sehingga akan kita dapatkan rumus akhir sebagai berikut:
Un = Sn – S(n-1)

Geometri

Barisan geometri merupakan suatu barisan dengan pembanding antara dua suku berurutan yang selalu bersifat tetap.
Pembanding dari dua suku berurutan tersebut dinamakan sebagai rasio, yang biasa dinotasikan dengan penggunaan huruf r.
Adapun rumus umum untuk rasio pada geometri, yaitu:
rumus rasio geomtri
Rumus Suku ke-n pada Barisan Geometri
Un = arn – 1 
Keterangan:
Umerupakan suku ke-n.
a merupakan suku pertama.
r merupakan rasio.
n merupakan banyak suku.
Suku Tengah Barisan Geometri
Apabila suatu barisan geometri memiliki banyak suku (n) ganjil, suku pertama a, serta suku terakhir Un maka suku tengah Ut dari barisan tersebut ialah sebagai berikut.
Rumus suku tengah barisan geometri:

rumus suku tengah barisan geometi

Deret Geometri

Deret geometri merupakan jumlah dari suku-suku barisan geometri. Deret geometri bagi n suku pertama dinotasikan dengan penggunaan huruf Sn serta mempuyai rumus seperti berikut ini:
barisan dan deret kelas 11
Keterangan: 
Smerupakan jumlah n suku pertama.
a merupakan suku pertama.
r merupakan rasio.
n merupakan banyak suku.

Deret Geometri Tak Berhingga

Barisan geometri dengan rasio antara -1 serta 1 disebut sebagai barisan geometri yang konvergen.
Deret geometri dari barisan geometri yang konvergen serta banyak suku tak berhingga bisa kita hitung dengan menggunakan rumus yang ada di bawah ini:
contoh soal barisan dan deret geometri
Keterangan: 
a merupakan suku pertama.
r merupakan rasio dengan syarat -1< r <1.

Matematika (Hubungan dan Fungsi)

RELASI dan FUNGSI

Relasi merupakan sebuah aturan yang memasangkan anggota himpunan satu ke himpunan yang lain.
Sebuah relasi yang terdapat dalam himpunan A dengan himpunan B biasa disebut sebagai pemasangan atau korespondensi dari anggota yang terdapat di dalam himpunan A ke anggota yang terdapat di dalam himpunan B.
Sebagai contoh: suatu himpunan A = {0, 1, 2, 5}; B = {1, 2, 3, 4, 6}, maka relasi dari himpunan A dengan himpunan B dapat di sajikan ke dalam diagram panah, diagram cartesius, himpunan pasangan berurutan, serta rumusnya dapat kita lihat pada gambar di bawah ini.
a. Diagram panah
b. Diagram cartesius
c. Himpunan pasangan berurutan
R = {(0, 1), (1, 2), (2, 3), (5, 6)}
d. Rumus
f(x) = x + 1, dimana x ∊ {0, 1, 2, 5} dan f(x) ∊ {1, 2, 3, 4, 6}

Pengertian Fungsi

Apabila sebelumnya pada bagian relasi dari himpunan A dan himpunan B dalam fungsi disebut sebagai fungsi dari A ke B apabia setiap anggota A dipasangkan dengan tepat satu anggota B.
Maka pada fungsi anggota dari himpunan A disebut sebagai domain (daerah asal). Sementara anggota dari himpunan B disebut sebagai kodomain (daerah kawan). Serta anggota yang ada dalam himpunan B yang berpasangan (himpunan C) disebut sebagai range (hasil) dari fungsi f.

Macam-Macam Fungsi

1. Fungsi konstan (fungsi tetap)

Sebuah fungsi f: A → B ditentukan dengan rumus f(x) disebut sebagai fungsi konstan jika dalam setiap anggota domain fungsi selalu berlaku f(x) = C. Yang mana C adalah bilangan yang konstan. 

2. Fungsi linier

Fungsi linier adalah fungsi f(x) = ax + b, yang mana a ≠ 0, a dan b termasuk ke dalam bilangan konstan. Grafik linier berbentuk garis lurus.

3. Fungsi kuadrat

Fungsi kuadrat adalah fungsi f(x) = ax² + bx + c, yang mana a ≠ 0 dan a, b, dan c merupakan bilangan konstan. Grafik kuadrat berbentuk seperti parabola.

4. Fungsi identitas

Fungsi identitas adalah fungsi di mana berlaku f(x) = x atau setiap anggota domain dan atau daerah asal dari fungsi dipetakan pada dirinya sendiri.
Grafik fungsi identitas adalah berupa garis lurus yang melalui titik asal serta seluruh titik melalui ordinat yang sama.
Fungsi identitas akan ditentukan oleh f(x) = x. 

5. Fungsi tangga (bertingkat)

Fungsi tangga adalah fungsi f(x) yang berbentuk interval sejajar.

6. Fungsi modulus (mutlak)

Fungsi modulus (mutlak) merupakan fungsi yang memetakan setiap bilangan real dakan daerah asal suatu fungsi menjadi nilai mutlak.

7. Fungsi ganjil dan fungsi genap

Sebuah fungsi f(x) disebut sebagai fungsi ganjil apabila berlaku f(-x) = –f(x) serta disebut sebagai fungsi genap dan apabila berlaku f(-x) = f(x).
Apabila fungsi f(-x) ≠ –f(x) dan f(-x) ≠ f(x) maka bukan termasuk fungsi ganjil dan juga fungsi genap. 

Kamis, 19 September 2019

Surat Lamaran

Jakarta, 19 September 2019

Hal : lamaran pekerjaan 

Kepada Yth.
Manager Personalia
RS Jantung Harapan Kita
Jl. Letjen S. Parman No.Kav.87,
Rt.1/Rw.8, Kota Bambu Utara,
Kec. Palmerah, Kota Jakarta Barat,
DKI Jakarta 11420

Dengan hormat,
Sehubung dengan adanya lowongan pekerjaan di Rumah Sakit Jantung Harapan Kita yang Bapak/Ibu pimpin, saya bermaksud ingin mengajukan lamaran pekerjaan sebagai ahli gizi, dimana data-data diri saya adalah sebagai berikut:

Nama                : Fitri Pratama Wulandari 
TTL                    : Jakarta, 17 Desember 2000
Jenis Kelamin  : Perempuan 
Agama               : Islam
Alamat              : Pedongkelan Depan No.75, Cengkareng, Jakarta                                     Barat
Pendidikan      : Universitas Esa Unggul Semester 1 Prodi Ilmu Gizi
Email                 : fitwulandari1712@gmail.com 
Telp                   : 087887770936

Berkaitan dengan hal tersebut, bersama surat ini saya sertakan kelengkapan berkas sebagai berikut:
1. Pas photo
2. Fotocopy KTP
3. Fotocopy Ijasah Terakhir
4. Daftar riwayat hidup

Demikian surat lamaran yang saya buat dengan sebenar-benarnya dan atas perhatian serta kebijaksanaan Bapak/Ibu pimpinan saya mengucapkan terima kasih.
Hormat saya,
Fitri Pratama Wulandari 

CV

Nama : Fitri Pratama Wulandari 
NIM : 20190302047
Dosen : Silvia Ratna Juwita(KJ01)
Prodi : Ilmu Gizi 


Senin, 16 September 2019

Matematika himpunan elemen dan bilangan

Matematika (Himpunan, Elemen, dan Bilangan)

Himpunan dan Elemen 

1.) Pengertian Himpunan
 Himpunan adalah kumpulan benda atau objek yang dapat didefinisikan dengan jelas. Benda atau objek dalam himpunan disebut elemen atau anggota himpunan. Dari definisi tersebut, dapat diketahui objek yang termasuk anggota himpunan atau bukan.
Contoh himpunan:
• Himpunan warna lampu lalu lintas, anggota himpunannya adalah merah, kuning, dan hijau.
• Himpunan bilangan prima kurang dari 10, anggota himpunannya adalah 2, 3, 5, dan 7.
Contoh bukan himpunan:
• Kumpulan baju-baju bagus.
• Kumpulan makanan enak.
2..)Jenis-Jenis Himpunan
  1. Himpunan Bagian (Subset).
Himpunan A dikatakan  himpunan  bagian  (subset)  dari  himpunan B ditulis A  B ”, jika setiap anggota A merupakan anggota dari B.
Syarat :
 B, dibaca : A himpunan bagian dari B
 B, dibaca : A bukan himpunan bagian dari B
B    A dibaca : B bukan himpunan bagian dari A
B    A dibaca : B bukan himpunan bagian dari A
Contoh :
Misal   A = { 1,2,3,4,5 } dan B = { 2,4} maka  B  A.
  1. Himpunan Kosong (Nullset)
Himpunan kosong adalah himpunan yang tidak mempunyai unsur anggota yang sama sama sekali.
Syarat :
Himpunan kosong = A atau { } Himpunan kosong adalah tunggal
Himpunan kosong merupakan himpunan bagian dari setiap himpunan
Perhatikan : himpunan kosong tidak boleh di nyatakan dengan { 0 }.
Sebab : { 0 } ≠ { }
  1. Himpunan Semesta
Himpunan semesta biasanya dilambangkan dengan “U” atau “S” (Universum) yang berarti himpunan yang memuat semua anggota yang dibicarakan atau kata lainya himpunan dari objek yang sedang dibicarakan.
  1. Himpunan Sama (Equal)
Bila setiap anggota himpunan A juga merupakan anggota himpunan B, begitu pula sebaliknya.dinotasikan dengan A=B
Syarat : Dua buah himpunan anggotanya harus sama.
Contoh :
A ={ c,d,e}    B={ c,d,e }   Maka A = B
  1. Himpunan Lepas
Himpunan lepas adalah suatu himpunan yang anggota-anggotanya tidak ada yang sama.
Contoh  C = {1, 3, 5, 7}   dan  D = {2, 4, 6}  Maka himpunan C dan himpunan D saling lepas.
Catatan : Dua himpunan yang tidak kosong dikatakan saling lepas jika kedua himpunan itu tidak mempunyai satu pun anggota yang sama
  1. Himpunan Komplemen (Complement set)
Himpunan komplemen dapat di nyatakan dengan notasi A. Himpunan komplemen jika di misalkan S = {1,2,3,4,5,6,7} dan A = {3,4,5} maka A  U. Himpunan {1,2,6,7} juga merupakan komplemen, jadi AC = {1,2,6,7}. Dengan notasi pembentuk himpunan ditulis :
AC = {x│x Є U, x Є A}
  1. Himpunan Ekuivalen (Equal Set)
Himpunan ekuivalen adalah himpunan yang anggotanya sama banyak dengan himpunan lain.
Syarat : Bilangan cardinal dinyatakan dengan notasi n (A) A≈B, dikatakan sederajat atau ekivalen, jika himpunan A ekivalen dengan himpunan B,

Contoh :
A = { w,x,y,z }→n (A) = 4
B = {  r,s,t,u   } →n  (B) = 4
Maka n (A) =n (B) →A≈B
Bilangan
Bilangan adalah kumpulan angka yang menempati urutan dari sebelah kanan sebagai nilai satuan, puluhan, ratusan, ribuan dan seterusnya. Sedangkan pengertian bilangan menurut wikipedia yaitu suatu konsep matematika yang dipergunakan untuk pencacahan serta pengukuran.

Simbol dan lambang yang dipakai untuk mewakili suatu bilangan disebut dengan angka atau lambang bilangan. Didalam matematika, konsep bilangan selama bertahun-tahun lamanya telah diperluas meliputi bilangan nol, bilangan negatif, bilangan rasional, bilangan irasional, serta bilangan kompleks.

Macam-macam Bilangan


1. Bilangan Cacah
Bilangan cacah adalah bilangan yang dimulai dari angka 0 dan selalu bertambah 1 dengan bilangan setelahnya.
contoh : 0, 1, 2, 3, 4 dan seterusnya.
 2.Bilangan Asli
Bilangan asli adalah bilangan yang dimulai dari angka 1 dan bertambah 1.
contoh : 1, 2, 3, 4, 5 dan seterusnya.

3. Pecahan Biasa
Pecahan biasa adalah bilangan yang dapat dinyatakan dalam a/b, dengan a dan b merupakan bilangan bulat dan b ≠ 0. Bilangan a disebut dengan pembilang sedangkan bilangan b disebut dengan penyebut.
contoh : 7/3, 1/3, 5/66

4. Bilangan Bulat
Bilangan bulat adalah himpunan bilangan bulat negatif, bilangan nol dan bilangan bulat positif.
contoh : ...., -3, -2, -1, 0, 1, 2, 3, .....

5. Bilangan Prima
Bilangan prima adalah seluruh bilangan asli yang hanya mempunyai faktor pembagi satu dan bilangan itu sendiri atau bilangan yang hanya dapat dibagi oleh 1 dan bilangan itu sendiri.
contoh : 2, 3, 5, 7, 11,....

6. Bilangan Komposit
Bilangan komposit adalah seluruh bilangan asli kecuali 1 dan tidak termasuk dalam bilangan prima.
contoh : 4, 6, 8, 9, 10,.....

7. Bilangan Rasional.
Bilangan rasional adalah semua bilangan yang dinyatakan dalam bentuk a/b, dengan a dan b merupakan anggota bilangan bulat serta b ≠ 0.

8. Bilangan Irasional
Bilangan irasional adalah bilangan yang tidak dapat dinyatakan dalam bentuk a/b, dengan a dan b merupakan anggota bilangan bulat serta b ≠ 0. merupakan kebalikan bilangan rasional.

9. Bilangan Riil
Bilangan riil adalah merupakan gabungan dari bilangan rasional dengan bilangan irasional.

10. Bilangan Desimal
Bilangan desimal adalah bilangan yang mempunyai bentuk ciri ciri antar bilangan dipisahkan dengan tanda koma sebanyak satu.

11. Bilangan Pangkat
Bilangan pangkat adalah bilangan yang dihasilkan dari mengalikan sebuah bilangan beberapa kali.

12. Bilangan Imajiner
Bilangan Imajiner atau yang dikenal dengan bilangan khayal adalah bilangan yang memiliki sifat  i2 = −1 . Dengan kata lain, bilangan tersebut memiliki akar negatif.
Contoh : I = { i, 4i, 5i, ….. }

13 . Bilangan Kompleks
Bilangan kompleks ialah bilangan yang dinotasikan oleh a+bi , dimana a dan b ialah bilangan riil, dan i ialah suatu bilangan imajiner dimana i 2 = −1. Bilangan riil a disebut juga bagian riil dari bilangan kompleks, dan bilangan real b disebut bagian imajiner. Bila dalam satu bilangan kompleks, nilai b ialah 0, jadi bilangan kompleks itu menjadi sama juga dengan bilangan real a.

Untuk contoh, 3 + 2i merupakan bilangan kompleks dengan bagian riil 3 dan bagian imajiner 2i.

14. Bilangan Genap
Bilangan Genap adalah bilangan yang dapat dinyatakan dalam bentuk 2n dan bilangan itu habis dibagi dengan bilangan 2.
Contoh: {2, 4, 6, 8, 10, 12, ….}

15. Bilangan Ganjil
Bilangan Ganjil adalah bilangan yang dapat dinyatakan dalam bentuk 2n – 1 dan tidak habis dibagi dengan bilangan 2.
Contoh: {-3, -1, 1, 3, 5, 7, 9, 11, 13, 15, … }

16. Bilangan Nol
Bilangan 0 adalah satu angka kosong (0) untuk mewakili angka di angka. Peranan terpenting angka 0 ialah menjadi identitas untuk bilangan real, bulat, dan aljabar yang lain.

17. Bilangan Negatif
Bilangan negatif ialah suatu bilangan yang mempunyai nilai minus (-) atau negatif.
Contoh: { dan seterusnya -5, -4, -3, -2, -1 }

Jumat, 13 September 2019

Autobiografi

Nama : Fitri Pratama Wulandari 
NIM : 20190302047
Dosen : Silvia Ratna Juwita(KJ01)
Prodi : Ilmu Gizi
Namaku Fitri Pratama Wulandari, aku biasa dipanggil Fitri/Wulan. Aku lahir di Jakarta, 17 Desember 2000. Aku anak pertama dari pasangan Slamet(Alm.) dan Rusmiyati, aku memiliki seorang adik laki-laki bernama Irfan Prasetyo dan kami berbeda 11 tahun. Aku tinggal dirumah yang sangat sederhana didaerah Cengkareng tepatnya di Jalan Pedongkelan Depan No 75 Rt001/Rw013. Ketika aku berumur enam tahun, aku mulai bersekolah di SDN Kapuk 11 Pagi, kemudian setelah lulus aku melanjutkan di SMPN 100 Jakarta. Setelah lulus SMP aku melanjutkan pendidikan di MAN 17 Jakartoa dan aku lulus pada tahun 2019. Ketika di SMP, saya bisa dibilang orang yang jarang bergaul. Karena saya mudah minder dan saya kurang percaya diri. Sehingga saya hanya mempunyai beberapa teman saja. Ketika waktu SMA, saya mulai memberanikan diri untuk bergaul dengan anak-anak yang lain. Dan saya saat itu memiliki banyak teman, tetapi anak satu orang anak yang tiduak suka dengan saya. Sampai dia menjelek-jelekkan saya didepan orang lain, hingga akhirnya saya dijauhi sama satu kelas bahkan sampai kelas lain. Itu adalah keadaan terburuk yang pernah saya alami, hingga pada akhirnya saya mulai bangkit dan menunjukan pada mereka semua bahwa saya tidak seperti yang mereka bayangkan. Saya benar-benar down ketika ayah saya meninggal, beliau meninggal tepat sehari sebelum adik saya ulang tahun dan pada saat saya berumur 17 tahun. Semenjak ayah saya meninggal, saya melakukan semuanya serba sendiri begitu juga dengan adikku. Saat ini aku melanjutkan pendidikan ke jenjang yang lebih tiggi di Universitas Esa Unggul. Aku mengambil jurusan Fakultas Ilmu-ilmu Kesehatan (FIKES) dan program studi Ilmu Gizi.