Selasa, 17 Desember 2019

Integral

Integral

Integral adalah kebalikan dari differensial. 
Apabila fungsi F(x) merupakan an integral (anti derivative) function dari fungsi f(x), maka: F(x) disebut sebagai primitive function, sedangkan f(x) merupakan derivative dari F(x) dan f(x) adalah fungsi kontinyu di atas domainnya atau suatu interval independent variabel x.
Jadi integration atau integral calculus menyangkut pencarian asal dari fungsi f(x). Tetapi differentiation mencari turunan dari F(x).
Differentiation dari F(x) menghasilkan fungsi yang unik f(x). Sebaliknya, integral dari f(x) menghasilkan banyak tak terbatas bentuk fungsi F(x).
Penjelasan:
Notasi integral dari f(x) terhadap x dalam rangka menuju atau di trasir ke F(x):

Dimana:

Aturan-Aturan Dasar Integral 

Rule 1 (the power rule)
Contoh Soal :

Rule 2 (the exponential rule)
Contoh Soal : 


Rule 3 (rule logarithmic rule)
Contoh Soal :


Rule 4 (the integral of a sum)
Contoh Soal:


Rule 5 (the integral of a multiple)
Contoh Soal :


Rule 6 (the subtitution rule)
Contoh Soal :


Rule 7 (integration by parts)
Contoh Soal :


Rule 8 (trigonometric rule)
Contoh Soal :

Senin, 16 Desember 2019

Matriks Lanjutan III

PERSAMAAN SIMULTAN

Sistem Persamaan Linear 2 Variabel
Cara yang paling umum dilakukan untuk menyelesaikan sistem persamaan linear dua variabel (SPLDV) adalah menggunakan metode substitusi, eliminasi, atau campuran. Kali ini, idschool akan mengenalkan cara menyelesaiakan sistem persamaan linear (SPL) dengan cara yang baru, yaitu dengan menggunakan matriks. Meskipun cara ini akan sedikit rumit, namun cara ini akan sangat berguna untuk menyelesaikan sistem persamaan linear dengan banyak variabel. Selanjutnya, langsung ke langkah-langlah penyelesaian SPLDV yang dapat dilihat di bawah.
Diketahui sistem persamaan linear dua peubah sebagai berikut.
  \[ ax + by = c \]
            \[ px + qy = r \]
Dua persamaan di atas merupakan sistem persamaan linear dengan dua variabel, yaitu x dan y. Bentuk sistem di atas dalam matriks bisa dilihat pada persamaan di bawah.
  \[ \begin{bmatrix} a & b \\ p & q \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} c \\ r \end{bmatrix} \]
Berdasarkan sifat matriks invertibel, maka variabel x dan y dapat diketahui melalui cara berikut.
  \[ \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a & b \\ p & q \end{bmatrix}^{-1} \begin{bmatrix} c \\ r \end{bmatrix} \]
  \[ \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{aq - bp} \begin{bmatrix} q & -b \\ -q & a \end{bmatrix} \begin{bmatrix} c \\ r \end{bmatrix} \]
Atau juga bisa dengan cara seperti berikut.
  \[ x = \frac{D_{x}}{D} = \frac{\left| \begin{matrix} c & b \\ r & q \end{matrix} \right| }{\left| \begin{matrix} a & b \\ p & q \end{matrix} \right| }\]
  \[ y = \frac{D_{y}}{D} = \frac{\left| \begin{matrix} a & c \\ p & r \end{matrix} \right| }{\left| \begin{matrix} a & b  \\ p & q \end{matrix} \right| }\]

Contoh soal sistem persamaan linear dua variabel yang diselesaikan menggunakan matriks dapat dilihat pada pembahasan di bawah.
Tentukan nilai x dan y yang memenuhi sistem persamaan linear:
  \[2x + y = 5 \]
  \[ x + y = 7 \]

Selanjutnya, akan diselesaikan SPLDV di atas menggunakan matriks. Bentuk matriks dari persamaan SPLDV pada soal adalah sebagai berikut.
  \[ \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \end{bmatrix} \]
  \[ \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} ^{-1} \begin{bmatrix} 5 \\ 7 \end{bmatrix} \]
  \[  \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{2 \cdot 1 - 1 \cdot 1} \begin{bmatrix} 1 & -1 \\ - 1 & 2 \end{bmatrix} \begin{bmatrix} 5 \\ 7 \end{bmatrix} \]
  \[  \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{2 - 1} \begin{bmatrix} 1 & -1 \\ - 1 & 2 \end{bmatrix} \begin{bmatrix} 5 \\ 7 \end{bmatrix} \]
  \[  \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ - 1 & 2 \end{bmatrix} \begin{bmatrix} 5 \\ 7 \end{bmatrix} \]
  \[  \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -2 \\ 9 \end{bmatrix} \]
Jadi, solusi dari dua persamaan linear dua variabel 2x + y = 5 dan x + y = 7 adalah x = -2 dan y = 9
CONTOH SOAL
ATURAN CRAMER
Aturan Cramer untuk Sistem 3 × 3
Aturan Cramer dapat diperluas untuk sistem persamaan linear 3 × 3, dengan menggunakan pola yang sama dengan sistem 2 × 2. Diberikan sistem umum 3 × 3,
Sistem 3 x 3
Solusi-solusi dari sistem tersebut adalah x = Dx/Dy = Dy/D, dan z = Dz/D, dimana DxDy, dan Dz dibentuk dengan mengganti koefisien variable-variabel yang bersangkutan dengan konstanta, dan D adalah determinan dari matriks koefisien (D ≠ 0).

Penerapan Aturan Cramer untuk Sistem 3 × 3
Diberikan suatu sistem persamaan linear 3 × 3
Sistem 3 x 3 Rumus
Solusi dari sistem tersebut adalah (xyz), dimana
x, y, z
dengan syarat D ≠ 0.

Contoh 2: Menyelesaikan Sistem 3 × 3 Menggunakan Aturan Cramer
Selesaikan sistem berikut dengan menggunakan aturan Cramer.
Contoh 2
Pembahasan Pertama kita tentukan determinan dari matriks koefisien untuk memastikan apakah aturan Cramer dapat diterapkan atau tidak. Dengan menggunakan baris ketiga kita mendapatkan
Contoh 2 D
Karena D ≠ 0, kita lanjut untuk menentukan determinan dari matriks-matriks lainnya dengan menggunakan Ms. Excel (rumus untuk menentukan determinan dalam Ms. Excel adalah “=MDETERM(array)”).
Contoh 2 Dx, Dy, Dz
Sehingga kita memperoleh,
Contoh 2 x, y, z
Jadi, selesaian dari sistem tersebut adalah (2, 0, –1).
CONTOH SOAL

Minggu, 15 Desember 2019

Matriks Lanjutan II

METODE SARRUS 
Ciri khas metode ini adalah pola perkalian menyilang elemen matriks.
Ciri khas ini juga dimiliki pola Sarrus 4×4, hanya saja dengan jumlah pola yang lebih banyak yaitu 3 pola.
determinan matriks 3x3 metode sarrus
Contoh soal: Tentukan determinan matriks berikut ini!
\large A = \begin{bmatrix} -2 &4 &-5 \\ 1 &3 &-7 \\ -1 &4 &-8 \end{bmatrix}
Maka determinan matriks A, yaitu:
Det A  =(-2)(3)(-8) + (4)(-7)(-1) + (-5)(1)(4) – ((-5)(3)(-1) + (-2)(-7)(4) + (4)(1)(-8))
Det A = (48 + 28 – 20) – (15 + 56 -32) = 56 – 39 = 17
Matriks 3×3 mempunyai sembilan elemen, jika salah satu atau beberapa elemennya bernilai nol.

Maka, perhitungan determinan dengan cara sarrus akan sedikit lebih cepat.
CONTOH SOAL
METODE MINOR DAN KOFAKTOR
Salah satu cara menentukan determinan matriks segi adalah denga minor-kofaktor elemen matriks tersebut.

Cara ini dijelaskan sebagai berikut:

Misalkan Aij adalah suatu matriks yang diperoleh dengan cara menghilangkan baris ke-dan kolom ke-dari suatu matriks Amxn.

Didefinisikan sebagai berikut:
  1. Minor elemen aij diberi notasi Mij, adalah Mij=det(Aij).
  2. Kofaktor elemen aij, diberi notasi Î±ij, adalah Î±ij=(1)i+jMij
Contoh:
Misalkan suatu matriks A berukuran 3x3 seperti berikut ini:

(123456789)

maka diperoleh:

 
 
Perhitungan Determinan dengan Minor-Kofaktor

Definisi: Misalkan suatu matriks (aij)nxn dan aij kofaktor elemen aij, maka:

CONTOH SOAL
EKSPANSI LAPLACE
Ada banyak sekali metode untuk menyelesaikan permasalahan mengenai determinan mulai dari sarrus, metode minor kofaktor, metode reduksi baris, dan lain-lain. Metode Larplace merupakan salah satu metode untuk menyelesaikan determinan matriks.
      Metode ini menggunakan bantuan determinan matriks 2x2 yang terbentuk dari pencoretan baris ke dan kolom ke j.  Kita dapat memilih akan mengekspansi ke arah mana yang kita mau, bisa searah baris ke  bisa juga searah kolom ke .Contohnya dengan matriks  yang sama dengan contoh di atas dan kita ekspansi searah dengan baris 1.

yang dicoret adalah baris 1 dan kolom 1, maka

didapatkan sebuah bilangan baru dengan tanda positiv dengan cara mengalikan elemen pada  baris 1 dan kolom 1 dengan determinan matriks sisa pencoretan yaitu  Berikutnya kita coret baris 1 kolem ke 2 lalu dilanjutkan coret baris baris 1 kolom 3. Selesai untuk menghitung nilai determinannya tinggal menjumlahkan ketiga bilangan tersebut yaitu.


Untuk aturan tanda positif negatifnya seperti berikut